中職Lamigo桃猿與統一獅隊今天在桃園球場交手,猿隊最終以8:3贏球但雙方火氣很大,獅隊守護神狄馬克還被驅逐出場,主因為何?「蔗總」黃甘霖說:「沒有別的,因為他們偷暗號。」
- May 26 Fri 2017 23:55
情侶檔開趴誘人吸毒傳愛滋主辦人:關我屁事
- May 26 Fri 2017 22:05
B肝C肝偽陽性案例參考
- May 26 Fri 2017 00:35
輸愛滋血成醫療人球揭捐血中心篩檢嚴重縫隙
- May 25 Thu 2017 14:52
網友心碎廣告「我被強姦得了愛滋」
- May 25 Thu 2017 11:28
愛滋為非洲青少歲首號死因削減對女性的性暴力為樞紐
- May 23 Tue 2017 12:45
最伶俐的無線耳機 能同步翻譯37國說話!
- May 23 Tue 2017 06:02
哈登感冒缺賽 火箭客場勝太陽終止3連敗
本季年度MVP(Most Valuable Player,最有價值球員)大熱門、火箭一哥「大鬍子」哈登(James Harden)因傷風缺賽,火箭攻勢完全不受影響,靠著主控貝佛利(Patrick Beverley)轟下全隊最高的26分、9助攻與8籃板,替補弓手威廉斯(Lou Williams)也挹注次高的23分,火箭客場123比116擊敗太陽,終止最近的3連敗,火箭今天團隊飆進14顆3分球,射中率到達36.8%,且禁區得分也以42比30優於太陽,就算團隊籃板46比61大幅掉隊敵手,好在團隊射中率以47%優於田主的42%,加上失誤也以15比23優於對手,才能在客場拿下勝利翻譯太陽控衛尤里斯(Tyler Ulis)今天轟下生活生計新高的34分、9籃板與9助攻,弓手布克(Devin Booker)也拿下27分、9助攻,太陽全隊共5名球員得分到達雙位數,惋惜沒能在主場擊敗少了王牌球星哈登的火箭。(龍柏安/綜合報導)
- May 23 Tue 2017 04:17
[問題] static inline的使用機會
翻譯社開辟平台(Platform): (Ex: VC++翻譯社 GCC, Linux, ...) Linux + gcc 5.3.1 (-std=gnu11) 問題(Question): 正在寫關於inline的文章翻譯 inline在C99/C11中可以有以下用法: inline:看獲得此函式的一概用inline(編譯器許可的話),看不到者不能用該函式 函式無對應的位址可供呼喚 除非該函式別的有同名的非inline版本 extern inline: 看得到此函式的一概用inline(編譯器許可的話),看不到者可用函式呼喚。 有對應的位址 static inline天成翻譯社就不懂了。 歸正inline不克不及外部呼喚,為啥要多一個static? 利用的機會是什麼? 感激
- May 21 Sun 2017 23:21
[試題] 104下 陳信希 自然說話處理 期中考
翻譯社課程名稱︰天然語言處置懲罰 課程性質︰系內選修 課程教師︰陳信希 開課學院:電資學院 開課系所︰資訊工程學系 測驗日期(年月日)︰2016/04/21 考試時限(分鐘):180 mins 試題 : 01. Machine translation (MT) is one of practical NLP applications. The development of MT systems has a long history翻譯社 but still has space to improve. Please address two linguistic phenomena to explain why MT systems are challenging. (10pts) 02. An NLP system can be implemented in a pipeline, including modules of morphological processing, syntactic analysis翻譯社 semantic interpretation and context analysis. Please use the following news story to describe the concepts behind. You are asked to mention one task in each module. (10pts) 這場地動可能影響日相安倍晉三的施政計畫翻譯安倍十八日說,消費睡調漲的 計畫不會改變。 03. Ambiguity is inherent in natural language. Please describe why ambiguity may happen in each of the following cases. (10pts) (a) Prepositional phrase attachment. (b) Noun-noun compound. (c) Word: bass 04. Why the extraction of multiword expressions is critical for NLP applications? Please propose a method to check if an extracted multiword expression meets the non-compositionality criterion, (10pts) 05. Mutual information and likelihood ratio are commonly used to find collocations in a corpus. Please describe the ideas of these two methods. (10pts) 06. Emoticons are commonly used in social media. They can be regarded as a special vocabulary in a language. Emoticon understanding is helpful to understand the utterances in an interaction. Please propose an "emoticon" embedding approach to represent each emoticons as a vector, and find the most 5 relevant words to each emoticon. (10pts) 07. To deal with unseen n-grams, smoothing techniques are adopted in conventional language modeling approach. They are applied to n-grams to reallocate probability mass from observed n-grams to unobserved n-grams, producing better estimates for unseen data. Please show a smoothing technique for the conventional language model翻譯社 and discuss why neural network language model (NNLM) can achieve better generalization for unseen n-grams. (10pts) 08. In HMM learning翻譯社 we aim at inferring the best model parameters, given a skeletal model and an observation sequence. The following two equations are related to compute the state transition probabilities. Σ_{t=1}^{T-1} ξ_t(i翻譯社 j) \hat{a}_{ij} = --------------------------------------- Σ_{t=1}^{T-1} Σ_{j=1}^{N} ξ_t(i,j) α_t(i) a_{ij} b_j(o_{t+1}) β_{t+1}(j) ξ_t(i, j) = ----------------------------------------- α_T(q_F) Please answer the following questions. (10pts) (a) Intuitively, we can generate all possible paths for the given observation sequence, and compute total times of a transition which the observation passes. Which part in the above equations avoids the generation of all possible paths? (b) Which part in the above equations is related to prorate count to estimate the transition probability of a transition? 09. Many NLP problems can be cast as a sequence labelling problem. Part of speech tagging is a typical example. Given a model and an observation sequence, we aim at finding the most probable state sequence. Please explain why this process is called a decoding process. In addition翻譯社 please give another application which can be also treated as a sequence labelling problem. (10pts) 10. What is long-distance dependencies or unbounded dependencies? Why such kinds of linguistic phenomena are challenging in NLP? (10pts) 11. Part of speech tagging can be formulated in the following two alternatives: Model 1: \hat{t}_1^n = argmax_{t_1^n} Π_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1}) Model 2: \hat{t}_1^n = argnax_{t_1^n} Π_{i=1}^n P(t_i|w_i, t_{i-1}) Please answer the following questions. (10pts) (a) Which one is discriminative model? (b) Which one can introduce more features? (c) Which one can use Viterbi algorithm to improve the speed? (d) Which one is derived on the basis of Bayes rule? 12. The following parsing tree is selected from Chinese Treebank 8.0. What NP and VP rules can be extracted from this parsing tree to form parts of a treebank grammer? (10pts) ( (IP (IP (NP-SBJ (NN 建築)) | (VP (VC 是) | | (NP-PRD (CP-APP (IP (NP-SBJ (-NONE- *pro*)) | | | | (VP (VV 開發) | | | | | (NP-PN-OBJ (NR 浦東)))) | | | | (DEC 的)) | | | (QP (CD 一) | | | (CLP (M 項))) | | | (ADJP (JJ 首要)) | | | (NP (NN 經濟) | | | (NN 運動))))) | (PU 。) | (IP (NP-SBJ (-NONE- *pro*)) | (VP (DP-TMP (DT 這些) | | | (CLP (M 年))) | | (VP (VE 有) | | (IP-OBJ (NP-SBJ (NP (QP (CD 數百) | | | | | (CLP (M 家))) | | | | | (NP (NN 建築) | | | | | (NN 公司))) | | | | (PU 、) | | | | (NP (QP (CD 四千餘) | | | | | (CLP (M 個))) | | | | | (NP (NN 建築) | | | | | (NN 工地)))) | | | (VP (VV 遍布) | | | | (PP-LOC (P 在) | | | | | (LCP (NP (DP (DT 這) | | | | | | (CLP (M 片))) | | | | | | (NP (NN 熱土))) | | | | | (LC 上)))))))) | (PU 。)) )
- May 21 Sun 2017 14:36
台灣2016年最新原籍+外國籍傳染者與病發者統計
- May 21 Sun 2017 13:24
看板 Translation 文章列表
- May 20 Sat 2017 18:06
[提問] 請問目下當今GE還可以跑彈珠嗎?
- May 19 Fri 2017 19:55
興亡千古榮華夢,青丹捲海角
- May 07 Sun 2017 03:54
愛喝含糖飲料 當心膽固醇塞血管
- May 07 Sun 2017 01:55
守護神被趕出場 教頭怒點出原因
- May 06 Sat 2017 20:36
任爸已簽放棄急救 Selina很掙扎
- May 03 Wed 2017 13:20
漢字使用國間專有名詞互譯
168國語言翻譯公司漢字使用國間專有名詞互譯(或:漢字使用國間固有名詞表記),是指傳統上共同擁有漢字文化的中國、日本、南北韓、越南相互間專有名詞(人名及地名)的翻譯和表記翻譯這些國家的人名、地名等專有名詞多為漢字構成。當今,在翻譯相互間的專有名詞時,通常採用漢字直譯或音譯的方法。
- May 02 Tue 2017 23:02
電腦輔助翻譯
168國語言翻譯公司電腦輔助翻譯(CAT,Computer-assisted Translation或Computer-aided Translation),亦稱電腦輔助翻譯系統,係透過人工智慧搜尋及比對技術,運用參考資料庫和翻譯記憶程式,紀錄翻譯人員所完成之譯文,當遇到相同與重複的句型、片語或專業術語時,能提供翻譯人員建議和解決方案,以節省翻譯時間及成本,同時確保翻譯品質與風格的一致性翻譯
簡而言之,電腦輔助翻譯就是充分運用資料庫功能,將已翻譯的文本內容加以儲存。當日後遇到相似或相同的翻譯文句時,電腦會自動比對並建議翻譯人員使用資料庫中已有的譯文作為可能的翻譯,讓翻譯人員自行決定是否接受、編輯或拒絕使用。概念上與一般機器翻譯、翻譯機、翻譯軟體及線上翻譯軟體截然不同翻譯並非僅僅是將文句詞語交給軟體處理後,軟體處理結果即為最終的翻譯結果。電腦輔助翻譯中,電腦處理的結果供翻譯人員參考,並非最終的翻譯結果,最終是由翻譯人員來決定最適合的翻譯結果。
- May 01 Mon 2017 17:19
電腦輔助翻譯
168國語言翻譯公司電腦輔助翻譯(CAT,Computer-assisted Translation或Computer-aided Translation),亦稱電腦輔助翻譯系統,係透過人工智慧搜尋及比對技術,運用參考資料庫和翻譯記憶程式,紀錄翻譯人員所完成之譯文,當遇到相同與重複的句型、片語或專業術語時,能提供翻譯人員建議和解決方案,以節省翻譯時間及成本,同時確保翻譯品質與風格的一致性翻譯
簡而言之,電腦輔助翻譯就是充分運用資料庫功能,將已翻譯的文本內容加以儲存。當日後遇到相似或相同的翻譯文句時,電腦會自動比對並建議翻譯人員使用資料庫中已有的譯文作為可能的翻譯,讓翻譯人員自行決定是否接受、編輯或拒絕使用。概念上與一般機器翻譯、翻譯機、翻譯軟體及線上翻譯軟體截然不同翻譯並非僅僅是將文句詞語交給軟體處理後,軟體處理結果即為最終的翻譯結果。電腦輔助翻譯中,電腦處理的結果供翻譯人員參考,並非最終的翻譯結果,最終是由翻譯人員來決定最適合的翻譯結果。
- Apr 27 Thu 2017 14:30
直译
- Apr 25 Tue 2017 16:03
Linux中文文件計劃
- Apr 19 Wed 2017 01:18
偽翻譯
- Apr 16 Sun 2017 19:55
Gettext
- Apr 15 Sat 2017 14:33
中文译名
- Apr 15 Sat 2017 11:31
來源語
- Apr 14 Fri 2017 15:25
EASE英文科研论文写作和翻译指南
- Apr 13 Thu 2017 02:22
林紓的翻譯
- Apr 12 Wed 2017 23:44
Gettext
- Apr 11 Tue 2017 18:07
五種不翻
- Apr 07 Fri 2017 20:37
多語言計畫
- Apr 07 Fri 2017 17:05
官方译名
- Apr 07 Fri 2017 03:49
偽翻譯
- Apr 05 Wed 2017 11:50
Linux中文文件計劃
- Apr 04 Tue 2017 09:03
五種不翻
- Apr 04 Tue 2017 00:04
EASE英文科研论文写作和翻译指南
- Apr 03 Mon 2017 12:13
官方译名
- Apr 03 Mon 2017 00:21
來源語
- Apr 02 Sun 2017 18:25
Gettext
- Mar 31 Fri 2017 09:25
Linux中文文件計劃
- Mar 29 Wed 2017 13:48
EASE英文科研论文写作和翻译指南
- Mar 29 Wed 2017 03:17
中文译名
- Mar 28 Tue 2017 18:39
來源語
- Mar 27 Mon 2017 21:05
新聞動態
- Mar 27 Mon 2017 21:05
新聞動態
- Mar 27 Mon 2017 21:05
新聞動態
- Mar 27 Mon 2017 15:48
新聞動態
- Mar 27 Mon 2017 09:23
意译
- Mar 26 Sun 2017 21:35
首頁
- Mar 25 Sat 2017 19:50
貢獻
- Mar 24 Fri 2017 21:27
费声骞
- Mar 24 Fri 2017 13:11
译后编辑
- Mar 23 Thu 2017 22:04
歐化中文
- Mar 23 Thu 2017 14:01
多語言計畫
- Mar 22 Wed 2017 14:57
林紓的翻譯
- Mar 22 Wed 2017 04:46
五種不翻
- Mar 21 Tue 2017 13:37
偽翻譯
- Mar 20 Mon 2017 23:29
中文译名
- Mar 19 Sun 2017 21:17
官方译名
- Mar 18 Sat 2017 07:07
佛經翻譯
- Mar 17 Fri 2017 11:28
Linux中文文件計劃
- Mar 16 Thu 2017 18:13
Gettext
- Mar 16 Thu 2017 06:39
翻译
- Mar 15 Wed 2017 23:23
來源語
- Mar 15 Wed 2017 13:03
借译
- Mar 15 Wed 2017 00:54
All your base are belong to us
- Mar 14 Tue 2017 18:10
Gettext
- Mar 13 Mon 2017 07:44
中文译名
- Mar 12 Sun 2017 18:58
翻译
- Mar 11 Sat 2017 12:33
首頁
- Mar 10 Fri 2017 22:48
直译
- Mar 10 Fri 2017 17:03
翻译
- Mar 10 Fri 2017 11:07
EASE英文科研论文写作和翻译指南
- Mar 09 Thu 2017 21:52
中文译名
- Mar 09 Thu 2017 18:30
中文译名
- Mar 09 Thu 2017 11:07
多語言計畫
- Mar 08 Wed 2017 19:39
Gettext
- Mar 08 Wed 2017 13:12
All your base are belong to us
- Mar 07 Tue 2017 23:24
EASE英文科研论文写作和翻译指南
- Mar 07 Tue 2017 18:55
借译
- Mar 07 Tue 2017 10:58
來源語
- Mar 06 Mon 2017 22:36
翻译
- Mar 06 Mon 2017 19:08
借译
- Mar 06 Mon 2017 12:23
Gettext
- Mar 05 Sun 2017 21:30
EASE英文科研论文写作和翻译指南
- Mar 05 Sun 2017 14:41
翻译
- Mar 04 Sat 2017 16:41
中文译名
- Mar 04 Sat 2017 00:16
中文译名
- Mar 03 Fri 2017 19:58
All your base are belong to us
- Mar 03 Fri 2017 11:17
借译
- Mar 03 Fri 2017 09:05
偽翻譯